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Abstract

Dispersion and polydispersity of evaporating droplets in turbulent flows are investigated through a newly proposed

stochastic model. The model is based on a first-order time series analysis, addresses the anisotropy of turbulence, and

adequately takes into account the temporal correlations. It predicts temperature and vapor mass fraction fluctuations as

well as velocity fluctuations. A set of averaged equations are derived for the carrier phase in homogeneous turbulence

while the interaction between the carrier phase and the droplet phase are considered through source terms. The per-

formance of the model is assessed by conducting simulations of droplet-laden homogeneous shear flows. Good

agreements are observed for various velocity, temperature and vapor mass fraction statistics with the DNS data.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Turbulent flows laden with droplets and particles

have been extensively investigated for several decades.

There are two categories of approaches to two-phase

turbulence modeling. One is the Eulerian–Lagrangian

approach, in which the carrier phase is solved in the

Eulerian framework and the dispersed phase is solved in

the Lagrangian framework. The other is the Eulerian–

Eulerian approach, in which both dispersed phase and

carrier phase are treated as continuum. Since tracking

particles in a Lagrangian framework is more natural, the

Eulerian–Lagrangian approach has found wider appli-

cations. In this framework, the statistical properties of

turbulence are usually determined by solving the Rey-

nolds-averaged Navier–Stokes (RANS) equations. The

fluctuations are generated based on the statistical

properties, e.g. mean and variance of the fluid fluctua-

tion velocity, by using stochastic tools. The literature [1–

7] is rich with previous contributions on development
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and application of various stochastic models. However,

most of the previous works are concentrated on the

isothermal turbulence where temperature and vapor

mass fraction fluctuations are not considered.

Droplet evaporation can be found in many practical

applications, such as liquid fuel combustors, spray dry-

ing and chemical power plants. Understandably, more

challenges are involved in modeling when the droplets

are evaporating and heat and mass transfer is involved.

Berlemont et al. [8] studied the heat and mass transfer

coupling between vaporizing droplets and turbulence

using a Lagrangian approach. Tolpadi et al. [9] pro-

posed a spray model for the prediction of gas turbine

combustors. Several other investigations on evaporating

sprays in turbulent flows can be found in the literature

[10–13]. All of these studies have ignored temperature

and vapor mass fraction fluctuations. Moissette et al.

[14] proposed a stochastic model to consider the tem-

perature fluctuation in a non-isothermal turbulence, but

no evaporation and, therefore, no vapor mass fraction

fluctuation was considered.

Recently, we presented a stochastic model [15] for the

prediction of velocity and temperature fluctuations in

non-isothermal turbulent flows laden with solid parti-

cles. The model accounted for anisotropy of turbulence
ed.
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Nomenclature

~A ðu; v;w; h; yÞ vector of carrier-phase fluctua-

tions

B transfer number

Cl droplet specific heat

Cp fluid specific heat
~d random vector

dp droplet diameter

EI normalized internal energy

ET normalized total energy

k carrier-phase turbulence kinetic energy

Le Lewis number

Lv latent heat of evaporation

mp droplet mass

Mr Ur=
ffiffiffiffiffiffiffiffiffi
cRTr

p
reference Mach number

Nu Nusselt number

P pressure of the fluid

Pr Cpl=j Prandtl number

R gas constant

Rab correlation function

S d < U1 > =dx2 mean velocity gradient

Sc Schmidt number

Sh Sherwood number

S/ source term, / ¼ m, ui, e
t time

T temperature

TL, Tab Lagrangian integral time scale

Ui ðU1;U2;U3Þ instantaneous velocity
up fluctuating velocity of the droplet phase in x1

direction

vp fluctuating velocity of the droplet phase in x2
direction

wp fluctuating velocity of the droplet phase in x3
direction

xi Eulerian spatial coordinates, i ¼ 1; 2; 3
Xi droplet position, i ¼ 1; 2; 3
Y instantaneous vapor mass fraction in the

carrier phase

ys fluctuating vapor mass fraction at the

droplet surface

Ys instantaneous vapor mass fraction at the

droplet surface

Greek symbols

� viscous dissipation rate

c ratio of the specific heats of the carrier phase

C mass diffusion coefficient

j thermal conductivity

l dynamic viscosity

q density

h fluctuating temperature

sp droplet time constant

Subscripts

p droplet properties

r reference parameters

s properties at the droplet surface

t time

Superscripts
0 Reynolds fluctuating quantity
00 Favre fluctuating quantity

~ Favre averaged quantity

~ vector

T transpose of a matrix

Other symbol

h i Reynolds average
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and included the effects of the temporal variation of

turbulence correlations. In the present paper, we will

extend our model to predict the evaporating droplet

behavior in compressible turbulence. In Section 2, we

discuss the governing equations for the dispersed phase

and present the new stochastic model. In Section 3,

model performance is assessed by comparison with DNS

data. Concluding remarks are provided in Section 4.
2. Dispersed phase equations and modeling

The role of the stochastic model is to provide fluc-

tuating quantities for the fluid at the location of the

droplet. These fluctuations are then used along with the

mean values, which are calculated separately, to inte-

grate the droplet Lagrangian equations and update its
position, Xi, velocity, Up;i, temperature, Tp, and mass,

mp. These Lagrangian equations are described, in non-

dimensional form, as [16]

dXi

dt
¼ Up;i; ð1Þ

dUp;i

dt
¼ f1

sp
ðUi � Up;iÞ þ gi; ð2Þ

dTp
dt

¼ f2
sp

ðT � TpÞ �
f3
sp

ðYs � Y Þ; ð3Þ

dmp

dt
¼ �f4s1=2p ðYs � Y Þ; ð4Þ

where Ui, T and Y show the instantaneous fluid velocity,

fluid temperature and vapor mass fraction, respectively,

at the location of the droplet, and Ys is the vapor mass

fraction at the surface of the droplet.
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Since the density ratio of the droplet and the carrier

gas is typically large, only the Stokes drag force, with a

correction for high droplet Reynolds number, and the

gravitational force are retained in the droplet momen-

tum equation. Also, the droplets are assumed to remain

spherical and their internal motions are neglected. All

the variables are normalized with reference scales for

length ðLrÞ, velocity ðUrÞ, temperature ðTrÞ and density

ðqrÞ. The non-dimensional droplet time constant, based

on the Stokesian drag of a sphere, is

sp ¼
Rerqpd

2
p

18
; ð5Þ

where dp and qp are the droplet diameter and density,

respectively, and Rer ¼ qrUrLr=l with l denoting the

fluid viscosity. The function f1 ¼ ð1þ 0:15Re0:687p Þ=
ð1þ BÞ in (2) represents an empirical correction to the

Stokes drag due to large droplet Reynolds numbers and

is valid for Rep ¼ RerqdpjUi � Up;ij6 1000, where B ¼
ðT � TpÞ=k is the transfer number with k ¼ Lv=CPTr, and
Lv, Cp and q representing the latent heat of evaporation,

the fluid specific heat at constant pressure and the fluid

density, respectively.

The droplets are assumed ‘‘lumped’’ so there is no

temperature variation within each droplet. The first term

on the right-hand side of (3) represents the rate of

change of the droplet temperature due to convective

heat transfer with the carrier phase. The factor

f2 ¼ Nu=3Prr represents a correlation for the convective

heat transfer coefficient based on an empirically cor-

rected Nusselt number, Nu ¼ ð2þ 0:6Re0:5p Pr0:33Þ=
ð1þ BÞ, where r ¼ Cl=Cp with Cl denoting the droplet

specific heat, and Pr ¼ Cpl=j is the Prandtl number with

j denoting the fluid heat conductivity coefficient. The

second term on the right-hand side of (3) represents the

change in the droplet internal energy due to phase

change. The correlation f3 ¼ qShk=3Scr is a function

of an empirically corrected Sherwood number, Sh ¼
ð2þ 0:6Re0:5p Sc0:33Þ, where Sc ¼ l=qC is the Schmidt

number with C denoting the binary mass diffusivity

coefficient.

The vapor mass fraction at the surface of the droplet

is equal to the vaporization pressure ðPvapÞ of the droplet
(for equivalent molecular weights of the gas and the li-

quid) and obeys the Clausius–Clapeyron equation

Ys ¼ Pvap ¼
PB
P

exp
ck

ðc� 1ÞTB
1

��
� TB

Tp

��
; ð6Þ

where the boiling temperature, TB, and pressure, PB, of
the liquid are assumed to be constant. Finally, (4) gov-

erns the rate of mass transfer from the droplet due to

evaporation which is a function of the vapor mass

fraction difference at the droplet surface, the droplet

time constant, and the Sherwood-number-dependent

correlation
f4 ¼ p
18

qp

 !0:5

qSh
Re1:5r Sc

: ð7Þ
2.1. Stochastic model

The stochastic model needed to obtain the fluctua-

tions is a generalization of the model presented in our

previous work [15], where a general framework was

formed for simulation of temperature and velocity

fluctuations. The model is based on the method of time

series analysis [17] and is extended here to simulate the

species fluctuations. We use the notation u, v, w, h and y
to denote fluctuations in the fluid velocity (in x1, x2 and
x3 directions), temperature and vapor mass fraction,

respectively, at the droplet location. These fluctuating

quantities at time t can be expressed as a linear aggregate

of previous values at time t � dt and a white noise which

is independent of the process,

~At ¼ b �~At�dt þ~dt; ð8Þ

where boldface shows a tensor, and

~At ¼

ut

vt

wt

ht

yt

0
BBBBBBBB@

1
CCCCCCCCA
;

b ¼

buu buv buw buh buy

bvu bvv bvw bvh bvy

bwu bwv bww bwh bwy

bhu bhv bhw bhh bhy

byu byv byw byh byy

0
BBBBBBBB@

1
CCCCCCCCA
;

~dt ¼

dtu

dtv

dtw

dth

dty

0
BBBBBBBB@

1
CCCCCCCCA
:

ð9Þ

Here ~dt is a white noise vector with zero mean and

independent of ~At.

To solve for the fluctuations, the expressions for b

and ~dt need to be determined. The method used for

derivation of these expressions is similar to that ex-

plained in our previous papers [15,18]; here we only

present the final results. The expression for b reads

b ¼ C � covð�1Þð~At�dt;~A
T
t�dtÞ; ð10Þ
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where
CðdtÞ ¼

Ruu

ffiffiffiffiffi
u2t

q ffiffiffiffiffiffiffiffiffi
u2t�dt

q
Ruv

ffiffiffiffiffi
u2t

q ffiffiffiffiffiffiffiffiffi
v2t�dt

q
� � � Ruy

ffiffiffiffiffi
u2t

q ffiffiffiffiffiffiffiffiffi
y2t�dt

q
Rvu

ffiffiffiffi
v2t

q ffiffiffiffiffiffiffiffiffi
u2t�dt

q
Rvv

ffiffiffiffi
v2t

q ffiffiffiffiffiffiffiffiffi
v2t�dt

q
� � � Rvy

ffiffiffiffi
v2t

q ffiffiffiffiffiffiffiffiffi
y2t�dt

q
..
. ..

. ..
. ..

.

Ryu

ffiffiffiffiffi
y2t

q ffiffiffiffiffiffiffiffiffi
u2t�dt

q
Ryv

ffiffiffiffiffi
y2t

q ffiffiffiffiffiffiffiffiffi
v2t�dt

q
� � � Ryy

ffiffiffiffiffi
y2t

q ffiffiffiffiffiffiffiffiffi
y2t�dt

q

0
BBBBBB@

1
CCCCCCA

ð11Þ
and RabðdtÞ is the correlation function assumed in the

following exponential form:

RabðdtÞ ¼
abffiffiffiffiffi
a2

p ffiffiffiffiffi
b2

q exp
dt
Tab

� �
; ð12Þ

where a and b represent u, v, w, h or y.
The solution for ~dt reads

~dt ¼ B �~Z; ð13Þ

where B is a matrix, and can be determined by using

Cholesky factorization of matrix covð~dt;~d
T
t Þ according

to the following relation:

B � BT ¼ covð~dt;~d
T
t Þ; ð14Þ

and ~Z is a random vector, each component of which is

independently sampled from a standard normal distri-

bution with a mean of zero and a variance of unity.

To conduct the simulations, the Lagrangian integral

time scales Tab must be known in advance. The adequate

description of various turbulence scales remains as one

of the most important problems in particle tracking

process as also discussed by Berlemont et al. [19], and

the determination of the Lagrangian integral time scale

is one of the most critical steps for the development of

the stochastic particle dispersion models. A popular

form for expressing the time scale is

TL ¼ CT

k
�
; ð15Þ

where CT is a constant varying between 0.135 and 0.56,

and k and � denote the fluid turbulence kinetic energy

and its rate of dissipation, respectively.

Due to the lack of information on various time

scales, in our simulations we assume Tab ¼ TL for all

velocity correlations. It has been shown that particle

dispersion is sensitive to the value of the constant CT,

and different values have been assigned in different flow

simulations in conjunction with various models [8]. (The

interested reader is referred to the literature [1,20–23] for

further discussion.) Recently, Simonin et al. [24] sug-

gested a constant value of 0:482 for incompressible

turbulent shear flow simulation, which was later adop-

ted by Zaichik [25]. However, no previous research has

been found on the time scale in compressible homo-
geneous shear flow; therefore, some tests have to be

conducted first. The existing information on time scales

for temperature and mass fraction correlations is even

more scarce. Several different time scales are tested here,

and the predicted results are assessed by comparison

with DNS data.

3. Model assessment

The flow considered here is a compressible homoge-

neous shear turbulence for which DNS data are avail-

able for comparison from the study of Mashayek [16] for

a homogeneous shear flow, where the carrier phase and

the dispersed phase are solved in Eulerian and

Lagrangian frames, respectively. For comparison pur-

poses, we consider in this study the same set of equations

as that used in the DNS study. The droplet Lagrangian

equations are presented in Section 2. Below we describe

the Eulerian equations for the carrier phase in both

instantaneous and averaged forms.

3.1. Carrier-phase governing equations

The carrier phase (composed of the gas and the

vapor) is considered to be a compressible, Newtonian

fluid with zero bulk viscosity, and to obey the perfect gas

equation of state. The instantaneous density, velocity,

pressure and temperature of the carrier phase are de-

noted by q, Ui, P and T , respectively. The instantaneous
vapor mass fraction is denoted by Y . The evaporating

droplets interact with the carrier phase, and the two-way

coupling effects must be taken into account for an

accurate representation of the flow. Here, we introduce

source terms Sm, Sui and Se to consider the two-way

coupling effects for mass, momentum and energy,

respectively. With this nomenclature, the Eulerian forms

of the non-dimensional continuity, momentum, and

energy equations for the carrier phase are given by

oq
ot

þ o

oxj
ðqUjÞ ¼ Sm; ð16Þ

o

ot
ðqUiÞ þ

o

oxj
ðqUiUjÞ

¼ � oP
oxi

þ 2

Rer

o

oxj
Sij

�
� 1

3
Ddij

�
þSui; ð17Þ
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oET

ot
þ o

oxj
½UjðETþP Þ�

¼ 1

ðc�1ÞRerPrM2
r

o2T
oxjoxj

þ 2

Rer

o

oxj
Ui Sij

��
�1

3
Ddij

��
þSe;

ð18Þ

and the conservation equation for the vapor mass frac-

tion is described as

o

ot
ðqY Þ þ o

oxj
ðqYUjÞ ¼

1

RerSc
o2Y
oxjoxj

þSm; ð19Þ

along with the equation of state P ¼ qT=cM2
r , where

Mr ¼ Ur=
ffiffiffiffiffiffiffiffiffi
cRTr

p
is the reference Mach number with R

denoting the gas constant. All the fluid variables are

normalized with the same reference scales used for the

droplet variables.

The total energy ðETÞ is the summation of the sen-

sible internal energy (qCvT , where Cv is the specific heat

of the carrier phase) and the kinetic energy ð1
2
qUiUiÞ of

the gas–vapor mixture. In the above equations, D ¼ Uj;j

is the dilatation ðUi;j ¼ oUi=oxjÞ, Sij ¼ 1
2
ðUi;j þ Uj;iÞ is the

rate-of-strain tensor, and dij is the Kroenecker delta

function. The specific enthalpies for the gas and the

liquid are described as hg ¼ T and hl ¼ rT , respectively.
In DNS, only the case with r ¼ 1 is considered, for

which the specific enthalpy of the vapor is expressed as

hv ¼ T þ k. All the enthalpies are normalized by CpTr.
The total energy Eq. (18) is derived by assuming unity

Lewis number ðLe � Sc=Pr ¼ 1Þ.
The source/sink terms Sm, Sui, and Se appearing in

(16)–(18) represent the integrated effects of the droplets

mass, momentum, and energy exchange with the carrier

phase. These Eulerian variables are calculated from the

Lagrangian droplet variables by volume averaging the

contributions from all of the individual droplets residing

within the cell volume (dV ¼ ðdxÞ3, where dx is the node
spacing) centered around each grid point. These terms

are expressed as

Sm ¼ � 1

dV

Xnp dmp

dt
; ð20Þ

Sui ¼ � 1

dV

Xnp d

dt
ðmpUp;iÞ

� �
; ð21Þ

Se ¼ � 1

dV

Xnp 1

ðc� 1ÞM2
r

d

dt
ðmpTpÞ

�

� k
ðc� 1ÞM2

r

dmp

dt
þ d

dt
1

2
mpU 2

p;i

� ��
; ð22Þ

where np is the number of droplets within the cell volume

and those cells with np ¼ 0 are assigned a zero value for

each variable.
3.2. Carrier-phase averaged equations

In this section, we derive transport equations for

carrier-phase averaged variables. When implemented in

conjunction with the stochastic model for fluctuating

variables, these averaged equations provide a complete

framework for simulation of droplet-laden, compress-

ible homogeneous shear flow.

For a general instantaneous variable f , the following
decompositions are applied:

f ¼ hf i þ f 0 ¼ ~f þ f 00; ð23Þ

where 0 and 00 denote fluctuating quantities, h i refers to
Reynolds average quantity and ~ refers to Favre aver-

aged quantity. For homogeneous shear flow, it is shown

that these two averages are equivalent [26]. Further-

more, recognizing that

ohf i
oxi

¼ 0 ð24Þ

for all the variables, except the mean streamwise veloc-

ity, the averaged equations can be simplified significantly

for homogeneous shear flow. After some algebraic

manipulations [27], the final averaged equations are

described as

ohqi
ot

¼ hSmi ð25Þ

for the carrier-phase density, and

ohY i
ot

¼ 1

hqi ð1� hY iÞhSmi ð26Þ

for the vapor mass fraction. Since the mean carrier-

phase velocity in homogeneous shear flow is known as

hUii ¼ Sx2di1, where S ¼ dhU1i=dx2 ¼ constant, we do

not need the momentum equation.

To obtain an equation for the mean temperature, we

write the internal energy EI as [16]

EI ¼
qðT=cþ Y kÞ
ðc� 1ÞM2

r

; ð27Þ

which upon averaging yields

hEIi¼
1

ðc�1ÞM2
r

1

c
ðhqihT i

�
þhq0T 0iÞþkðhqihY iþhq0Y 0iÞ

�
:

ð28Þ

The analysis of the DNS data shows that correlations

hq0Y 0i and hq0T 0i can be neglected. As a result, rear-

ranging (28) yields the following equation for the mean

temperature:

hT i ¼ c
hqi ðc
�

� 1ÞM2
r hEIi � khqihY i

�
: ð29Þ
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To proceed, the average source term hSmi is expressed
as

hSmi ¼ � 1

ð2pÞ3
Xnp dhmpi

dt
; ð30Þ

where np is the total number of droplets in the simula-

tion box which has a volume of ð2pÞ3 in DNS. Finally,

the transport equation for hEIi in homogeneous flow is

given as [16]

ohEIi
ot

¼ �þ S2

Rer
� 1

ðc� 1ÞM2
r ð2pÞ

3

Xnp
mp

dTp
dt

�
þ Tp

dmp

dt

�
:

ð31Þ
3.3. Results and discussion

The stochastic simulations are conducted following

exactly the same initial conditions as in the DNS. Our

numerical methodology for stochastic simulation is the

same as in our previous papers [15,18] and is not re-

peated here for brevity. The carrier phase fluctuating

quantities are directly imported from DNS results into
Fig. 1. Mean properties comparison between simulation and DNS dat

mass fraction of the carrier phase and its magnitude at the droplet su

droplet diameter squared.
stochastic simulations and comparisons are presented

here for various carrier-phase mean variables and

droplet mean and fluctuating variables.

We first concentrate on the validation of the mean

flow variables. Fig. 1 shows temporal variation of vari-

ous mean variables and comparisons with the DNS

data. The time axis in the figure is normalized by the

inverse of the shear rate S. The droplets are released into

the flow at St ¼ 0, but they start evaporating at St ¼ 2.

This is evident from Fig. 1 which clearly shows different

behaviors before and after St ¼ 2. Before the evapora-

tion of the droplets begins, the fluid internal energy EI

includes only the gas part and is increasing slightly due

mainly to the energy added to the system by the mean

velocity gradient. After the evaporation begins, the

carrier phase includes both the gas and the vapor, and

the internal energy exhibits a sudden increase due to the

addition of the vapor internal energy. It should be noted

that the simulations are conducted for a periodic box

without any net exchange of mass, momentum or energy

with the surroundings. As a result, the density of the

carrier phase increases in time because of the mass

transfer from the droplets to the gas by evaporation.
a: (a) internal energy and density of the carrier phase; (b) vapor

rface; (c) temperatures of the carrier phase and the droplets; (d)



Fig. 2. The effect of time scale on droplet velocity fluctuation in

the streamwise direction (Scale 1, TL ¼ 0:482 k
�
; Scale 2,

TL ¼ 1:98; Scale 3, TL ¼ 2� 0:482 k
�
; Scale 4, TL ¼ 1:8� 0:482 k

�
).
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(Note that the curve for the mean density has been

shifted upward as hqi þ 1 so that it can be shown on the

same graph with the internal energy.)

The temporal variation of the vapor mass fraction at

the surface of the droplet, hYsi, is of great importance in

predicting the droplet evaporation. It is observed in Fig.

1(b) that the mean vapor mass fraction at the surface of

the droplet sharply decreases immediately after the

evaporation begins. This is because the initial difference

of the mass fraction at the surface of the droplet and

that in the carrier phase is large. After some time, the

evaporation process approaches an equilibrium with the

heat transfer process, and the mass fraction begins to

increase due to the heat transfer from the gas. The

temporal evolution of the vapor mass fraction in the

carrier phase, hY i, is also shown in Fig. 1(b). The mean

mass fraction is increasing continuously after the evap-

oration starts, because evaporation always contributes

to the increase of the amount of vapor in the carrier

phase. It is also noted that, in the absence of chemical

reaction, there is no mechanism for consumption of

vapor in the simulation. Fig. 1(c) shows the temporal

variations of the carrier phase and the droplets mean

temperatures. The droplet temperature exhibits a sharp
Fig. 3. Temporal evolution of droplet velocity correlations and fluid-

CT ¼ 1:8� 0:482).
decrease immediately after the evaporation begins,

which is a very similar behavior to that of the vapor

mass fraction at the surface of the droplet. This is be-

cause during the initial stages of evaporation the energy
droplet velocity cross-correlations (Scale 1, CT ¼ 0:482; Scale 4,



Fig. 4. Temporal evolution of the root mean square of (a)

vapor mass fraction fluctuation at droplet surface and (b)

droplet temperature fluctuation (Scale 1, uniform TY ¼ 0:1;

Scale 2, CYCT
k
�
; Scale 3, non-uniform TY ¼ 0:1–0:28).
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needed for phase change is provided by the decrease of

the droplet internal energy.

To study the evaporation rate, the temporal variation

of the mean-squared droplet diameter hd2
pi=d2

p0 is plotted

in Fig. 1(d), where dp0 is the initial droplet diameter. It is

noted that, the rate of change of the mean-squared

droplet diameter is linear after a short initial stage. This

behavior is in agreement with the classical d2-law [28,29].

The deviation from the linear trend at the initial stage

can be explained by considering the temporal variations

of the mean vapor mass fraction at the surface of the

droplet and the droplet temperature as discussed above.

All the results in Fig. 1 suggest that the modeled average

equations are perfectly capable of reproducing the DNS

results.

Next, we focus our attention on fluctuating variables.

To accurately predict the droplet statistics, a time scale

must be determined first for the velocity correlation. Fig.

2 shows the results for hupupi velocity correlations cal-

culated based on four time scales, where up is the droplet
fluctuating velocity in the streamwise direction. Scale 1 is

the time scale from Eq. (15), and Scale 2 is a constant

value of 1.98 obtained by regressing the DNS data of

huðtÞuðt � dtÞi for St < 4. Scale 3 is two times Scale 1,

and Scale 4 is 1.8 times Scale 1. From Fig. 2, it is ob-

served that Scale 1 yields smaller values for hupupi;
however, it captures the trend of variation quite closely

to the DNS data. Scale 2 gives good results for St < 4,

but afterwards its predictions deviate significantly from

the DNS data. This is because the regression is based on

the data for St < 4, and there are no provisions for

adjusting the time scale as k and � change in time. Scale 3

provides very good comparison with the DNS data

during the entire simulation. Scale 4 is slightly smaller

than Scale 3, and the simulation results are accordingly

improved. As a result, Scale 4 is the choice for time scale

for this turbulent flow. The main reason for introducing

the coefficient 1.8 is that the DNS is for a much lower

Reynolds number as compared to laboratory flows

based on which Eq. (15) is proposed. The following re-

sults are based on this time scale; however, for com-

parison we also present the results based on Scale 1.

All the statistics of the dispersed phase and the fluid-

droplet cross-correlations are obtained through our

stochastic model; here only some of the results are pre-

sented. Fig. 3(a) shows the temporal evolution of the

droplet normal stresses in streamwise and cross-stream

directions as well as the shear stress of the droplets. Fig.

3(b) shows the time evolution of the fluid-droplet

velocity cross-correlations in all three directions. In this

figure, we have used vp and wp to denote the droplets

fluctuating velocities in cross-stream and spanwise

directions, respectively. It is clear that the simulation

results are in good agreement with the DNS data, and

the model can properly predict various velocity corre-

lations of the evaporating droplets in this turbulent flow.
To address the temperature and mass fraction fluc-

tuation correlations, the choice of time scale again is a

very important issue. As compared to velocity correla-

tion, temperature and mass fraction fluctuation corre-

lations have much less information available from the

existing literature; therefore, it is more difficult to assign

an appropriate form. We start by regressing the DNS

data to an exponential function, and then make some

adjustments based on the comparison of the simulation

results with the DNS data. Fig. 4(a) shows the root

mean square (rms) value of the vapor mass fraction

fluctuation at the droplet surface. A variety of time

scales have been tested; only three are discussed here.

Scale 1 is taken as a uniform value, TY ¼ 0:1. For Scale
2, we assume the time scale for mass fraction correlation

is proportional to that for velocity correlation, so the

expression for TY becomes TY ¼ CYCT
k
�
, with CY ¼ 0:1

and CT ¼ 0:482. Scale 3 takes stepwise values in time,

which varies from 0.1 to 0.28, somewhat in a curve-fit-

ting manner. As witnessed from the figure, neither the

uniform time scale nor the scale proportional to that for



Z. Gao, F. Mashayek / International Journal of Heat and Mass Transfer 47 (2004) 4339–4348 4347
velocity correlation are capable of providing a good

comparison for 3 < St < 7. However, the stepwise non-

uniform scale can be adjusted to yield a very good

agreement with the DNS data for the entire simulation.

Following the same idea, we simulated the rms of the

droplet temperature fluctuation, and the results are

presented in Fig. 4(b). Similarly, three different time

scales are presented here and, again, the stepwise non-

uniform time scale yields the best comparison with the

DNS data.
4. Conclusions

The droplet evaporation in a low-Mach number

homogeneous shear flow is investigated using a new

stochastic model for predicting the vapor mass fraction

fluctuations as well as the droplet velocity and temper-

ature fluctuations. The proposed stochastic model is

developed using the method of time-series analysis,

and accounts for temporal correlations and anisotropy

of the turbulence. The cross-correlations among vari-

ous components of the velocity, temperature and vapor

mass fraction are also taken into account. Appropriate

Lagrangian integral time scales for velocity, temperature

and mass fraction are discussed. The mean flow field of

the carrier phase is calculated by solving the averaged

governing equations. Various statistics, including the

droplet turbulence correlations and the fluid-droplet

turbulence cross-correlations are obtained through the

stochastic model. Comparison with the available DNS

data, shows good agreements for various statistics.

Nevertheless, the results are sensitive to the choice of the

time scale, in agreement with previous observations re-

ported in the literature. The proper description of the

time scale for temperature and passive scalar remains as

a very important subject in turbulence research in the

future.
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